
DATA-AWARE APPLICATION PLACEMENT AND ROUTING
IN THE CLOUD-IOT CONTINUUM

JACOPO MASSA

jacopo.massa@phd.unipi.it

pages.di.unipi.it/massa

mailto:jacopo.massa@phd.unipi.it
http://pages.di.unipi.it/massa

RESEARCH
CONTEXT

Cloud

Edge

IoT

(~ hundreds)
↑ processing ↑ storage

(~ thousands)

(~billions)
↓ processing ↓ storage

Microservice-based
architecture

PROBLEM

Where to place application
services and how to route
traffic between them in a
context- and QoS-aware

manner?

RELATED WORK [1,2]

[1] Salaht et al., “An overview of service placement problem in fog and edge computing”, CSUR, 2020
[2] Brogi et al. , “How to place your apps in the fog: State of the art and open challenges”, SPE, 2020

Software,
Hardware, IoT

Latency,
Bandwidth

Security
(only a few)

SDN
Routing

• Devise a declarative modelling of Cloud-IoT infrastructures and multi-service applications, to determine eligible
application placements and data traffic routings across Cloud-IoT resources in a context-, QoS-, and data-aware manner.

• Exploit continuous reasoning to speed-up decision making at runtime.

• Implement and assess the proposed solution in a Prolog open-source tool.

OBJECTIVE

Size Transmission
Rate

Sources
(sensors)

Targets
(actuators)

WE AIMED TO:

DATA TYPE

CONTINUOS REASONING

•Adapt placement and routing at runtime.

•Triggered at each infrastructure/application change.

•Partial re-deployment, focusing only on suffering services.

•Speed-up the whole placement and routing search process.

MONITOR APP &
INFRASTRUCTURE

PERFORM
CONTINUOUS REASONING

APPLY DEPLOYMENT
AND ROUTING DECISIONS

DA-PLACER: Data-Aware Placer

2.4GHz,2GB,16GB
[python, mySQL]

[encryption, auth]

Parking Services

3GHz,6GB,256GB
[python, ubuntu]

[encryption, auth]

Mann Lab

2.4GHz,6GB,128GB
[ubuntu]
[auth]

Hoagland Hall
cloud

5GHz,16GB,600GB
[ubuntu, mySQL, python]
[encryption, auth]

ISP

4GHz,8GB,512GB
[ubuntu, mySQL, python]
[encryption, auth]

Student Centre

3GHz,6GB,256GB
[python, mySQL]

[encryption, auth]

Life Science

4GHz,8GB,512GB
[ubuntu, mySQL, python]

[encryption, auth]

Fire & Police

3GHz,6GB,128GB
[ubuntu, mySQL]

[auth]

Briggs Hall

2.4GHz,3GB,50GB
[ubuntu, mySQL]

[]

Kleiber Hall

2.4GHz,2GB,32GB
[ubuntu]

[encryption, auth]

Sciences &
Lecture Hall2.4GHz,2GB,32GB

[ubuntu]
[encryption]

West Entry

10ms
1000Mpbs

10ms
1000Mpbs

50ms
10000Mpbs

5ms
250Mpbs

5ms
250Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

5ms
250Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

15ms
70Mpbs

Example infrastructure

Parking
Services

West Entry

Fire &
Police

Life
Sciences

Briggs
Hall

Sciences &
Lecture
Hall

Students
Centre

Mann Lab

Kleiber
Hall

Hoagland
Hall

ISP

data
storage

controller

interface

cloud

Route Source Target Alloc BW
(Mbps)

visitor dataStorage 24

artifact dataStorage 15

dataStorage controller 18

controller door 22,5

controller AR glasses 27

camera interface 40

interface controller 40

interface display 20

DA-Placer Output

data
storage

controller interface

120ms 100ms

videoStream
2 Mb

[encryption]

50ms 80ms

100ms
100ms

60ms 60ms

visitorStats
0.4 Mb

[auth,encryption]

artStats
0.5 Mb

[auth,encryption]

20
Hz

10Hz

20Hz

25
Hz25
Hz

30Hz30Hz

30
Hz

60Hz

20Hz

20Hz

Example application

DA-PLACER (II)

Example infrastructure

Example application

:- daplacer(museuMonitor, Placement, Routes).

% on(Service, Node)

Placement = [on(dataStorage, isp),
 on(controller, lifeSciences),
 on(interface, mannLab)],

% ((source, target), AllocatedBandwidth, Route)

Routes = [((dataStorage, controller), 18, [isp, firePolice, westEntry, mannLab, lifeSciences]),
 ((interface, controller), 40, [mannLab, westEntry, parkingServices, lifeSciences])
 ...

DA-Placer Output

NEXT STEPS

• Prolog prototype (https://github.com/di-unipi-socc/daplacer) that can be used to:
‣ model data, services and IoT devices in a data-aware manner,
‣ jointly place both data and services.

• security requirements

• runtime adaptation (continuous reasoning approach)

PROGRESS W.R.T THE STATE-OF-THE-ART

LIMITATIONS AND FUTURE WORK
• multi-objective optimisation

(evaluate the goodness of a solution,
“greenness” included)

• identify interesting
application contexts
(AI applications, …)

• further management decision
(scalability, undeploy, Osmotic)

• validate placement and routing
solutions on real testbeds

• increase prototype usability
(e.g. user-friendly tools)

• extending the model to account
for serverless/FaaS

https://github.com/di-unipi-socc/daplacer

THANK YOU FOR
YOUR ATTENTION!

